Example 6: Multiscale Increment Entropy
Import a signal of uniformly distributed pseudorandom integers in the range [1 8] and create a multiscale entropy object with the following parameters: EnType
= IncrEn(), embedding dimension = 3, a quantifying resolution = 6, normalization = true.
X = ExampleData("randintegers");
Mobj = MSobject(IncrEn, m = 3, R = 6, Norm = true)
(Func = EntropyHub._IncrEn.IncrEn, m = 3, R = 6, Norm = true)
Calculate the multiscale increment entropy over 5 temporal scales using the modified graining procedure where:
$y_j^{(\tau)} =\frac{1}{\tau } \sum_{i=\left(j-1\right)\tau +1}^{j\tau } x{_i}, 1<= j <= \frac{N}{\tau }$
MSx, _ = MSEn(X, Mobj, Scales = 5, Methodx = "modified");
5-element Vector{Float64}:
4.271928856964401
4.305911441727119
4.286637325462995
4.2532727527665575
4.277177920851601
Change the graining method to return generalized multiscale increment entropy.
$y_j^{(\tau)} =\frac{1}{\tau } \sum_{i=\left(j-1\right)\tau +1}^{j\tau } \left( x{_i} - \bar{x} \right)^{2}, 1<= j <= \frac{N}{\tau }$
MSx, _ = MSEn(X, Mobj, Scales = 5, Methodx = "generalized");
5-element Vector{Float64}:
-0.0
3.83143162219877
4.24634531832518
4.271178349238616
4.192115013720915