Example 8: Composite Multiscale Cross-Approximate Entropy
Import two signals of uniformly distributed pseudorandom integers in the range [1 8] and create a multiscale entropy object with the following parameters: EnType
= XApEn(), embedding dimension = 2, time delay = 2, radius distance threshold = 0.5
X = ExampleData("randintegers2");
Mobj = MSobject(XApEn, m = 2, tau = 2, r = 0.5)
(Func = EntropyHub._XApEn.XApEn, m = 2, tau = 2, r = 0.5)
Calculate the comsposite multiscale cross-approximate entropy over 3 temporal scales where the radius distance threshold value (r
) specified by Mobj
becomes scaled by the variance of the signal at each scale.
X = ExampleData("randintegers2"); # hide
MSx, _ = cXMSEn(X[:,1], X[:,2], Mobj, Scales = 3, RadNew = 1)
3-element Vector{Float64}:
1.0893229452569062
1.4745638145624824
1.293182408488266